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ABSTRACT 
Extracting hepatic vasculature from 3D imagery is important 
for diagnosis of liver disease and planning liver surgery. In 
this paper we propose to segment vessels from liver CT 
images using a 3D graph-cuts based method that utilizes 
probabilistic intensity information and surface smoothness 
as constraints. A semi-automatic graph-based technique is 
then employed to efficiently separate the hepatic vessel 
systems. The complete vascular analysis method has been 
evaluated on 6 liver CT datasets using manual segmentation 
as the reference and showing that the method is reasonable 
robust to parameter choice and gives results of similar 
accuracy to previous methods in a time-efficient manner. 

Index Terms— vascular segmentation and analysis, 
graph cuts, liver analysis, oncology. 

1. INTRODUCTION 

In planning treatment for cancer in the liver, it is crucial to 
have exact knowledge of liver tumors and their 3D location 
relative to the liver vasculature. There are increasingly 
different options for treating liver cancers, ranging from 
surgery, radiofrequency ablation, chemotherapy and 
radiotherapyCT and MR images are used in disease 
diagnosis and therapy assessment. These are used to look at 
the liver volume, to characterize masses as well as to 
visualize the vasculature. Liver images are surprisingly 
difficult to analyze due to the variable shape of a natural 
liver, many organs/tissues touching the surround of the liver, 
and the relatively low contrast of vessels. Indeed a workshop 
at MICCAI 2007 was dedicated to evaluating state-of-the-art 
methods of liver CT volume segmentation [1].  
Segmentation of the liver vascular system, including 
separation of the portal vein, hepatic vein, and hepatic artery 
systems is important clinically, to precisely localize liver 
cancer, metastases, and other lesions; to approximate liver 
segments (by say the Couinaud segment system) and show 
areas of blood supply, and to provide a patient-specific 3D 
visualization of key liver structures for treatment planning. 
Contrast-enhanced CT, with phase-gating to enhance 
different components of the liver anatomy, is typically used 
for vessel visualization, because it has superior spatial 
resolution to MRA. 

There is an extensive literature on vasculature segmentation 
for MRA and CT data, particularly for applications in 
neurology and cardiology. Some authors have treated vessel 
segmentation as a tracking problem, where vessels are 
iteratively tracked constrained using information on the 
centerlines, and local features [2,3]. This class of approach 
is fast, but requires special routines to handle branch points 
and some user-interaction to initialize. Level-sets methods 
[4,5] have proved popular for MRA-segmentation but 
require good initialization and typically use speed functions 
which implicitly assume good contrast data which is not the 
case for liver CT images. Intensity-threshold-based methods 
have shown some promise for liver CT images. Soler et al 
[6] use a global threshold histogram-based approach 
followed by a number of post-processing steps but did not 
present an evaluation of their method. Selle et al [7] define 
an “optimal” intensity threshold using region-growing, but 
their method appears to only be suitable for large vessels. 
In this paper we propose to use the graph cuts framework [8] 
for vascular segmentation which to our knowledge has not 
been investigated before in this context. The graph cuts 
method is a relatively new segmentation technique; the basic 
idea is to represent the image as a graph in which every 
voxel corresponds to a node. Depending on a cost function, 
the graph is separated (cut) into two subsets. The attractive 
properties of the method for vascular segmentation are that it 
(1) computes a global optimum of a cost function in low-
order time; (2) requires no geometric initialization; and, (3) 
allows for incorporation of region information and boundary 
constraints in a natural way. 

2. ALGORITHM 

2.1. Overview 
The algorithm that has been developed takes as input a liver 
CT image and produces a delineation of the different vessel 
subsystems (see Figure 5). Figure 1 shows a flowchart of the 
key steps. The method starts by cropping the volume of 
interest (i.e. the liver) and performing anisotropic diffusion 
as a pre-segmentation step. A graph cuts segmentation 
method (sect 2.2) is employed to detect vessels, and then the 
vasculature sub-trees are identified using skeletonization 
followed by a novel graph-based analysis (sect 2.3). 
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2.2. Segmentation using Graph Cuts 
Due to space constraints, we assume some familiarity with 
the concept of graph cuts [8]. Briefly the idea is to form a 
weighted graph ( )EtsVG },,{∪=  where the node set 

},{ tsV ∪  contains all voxels Vv ∈ and two additional 
terminal nodes, the source s and sink t.
For image segmentation, the edge-set E consists of n-links
which connect neighboring voxels and t-links that connect 
all voxels v to s and t. The goal is to find the optimal cut of a 
cost function defined as the sum of the weights of the cut 
edges. The labeling vector L marks each voxel p in the 
image V as object O or background B. The link between a 
pair of neighboring voxels {p,q} in a neighborhood N is cut 
if qp LL ≠ . Then the cost C  is defined as, 
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Here the n-weights (term 1 in eqn 1) are determined by [8] 
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where qp III −=Δ  , and σλ ,B  are parameters and 

( ) qpqp LLifLL ≠= 1,δ  or 0  otherwise. The t-weights 
(term 2 in eqn 1) are determined as 

),|()( XIIPXR pLp =⋅= λ    (3) 
where P(I|X) is the probability of intensity I being a member 
of class X, X=O or B,  and Lλ  is a third parameter.  
The min-cost cut defined in Eqn. 1 can be solved using any 
max-flow algorithm. We use an enhanced version of the 
augmenting paths algorithm which is publically available [9] 
and solves the max-flow problem in low-order polynomial 
time. 
We determine the intensity distribution P(I|O) by 
interactively marking some vessels in a single representative 

Figure 1: Flowchart of vascular analysis algorithm.

2D slice as suggested in [8]. Since the portion of vessels in 
the image is usually very small, we can assume that 
P(I|B)=P(I). A bin width of 5HU was chosen in the 
implementation which we have found gives a sufficiently 
smooth probability function. A typical intensity histogram 
for a low contrast dataset is shown in Fig 2. 

Figure 2: Intensity distribution for low contrast vessels. 

2.3 Vasculature Geometry Graph Construction 
Since no shape prior is included to this point, the vessel 
segmentation from the graph cuts algorithm tends to leak 
into background structures (ribcage, tumors, kidneys) if they 
are of similar intensity. Furthermore, the portal and the 
hepatic venous system are often linked via pseudo-
connections. To improve the segmentation results, we use 
the following graph-based analysis to incorporate geometric 
a priori knowledge. First a 3D skeletonization algorithm is 
applied [10] – this particular algorithm uses 26-
neighborhood connectivity of the object. The 3D skeleton is 
then used to create a geometric graph G (note: though used 
in sect 2.2 in another context, we prefer to use this symbol G 
again here as it is the one used most often in related work). 
In this case, the edges and nodes of G represent the 
branching points and adjacent vessel segments respectively. 
The generation of G is realized as follows: 
1. All skeleton voxels with more than 2 neighbors are 

marked branching points and added as nodes to G. 
2. All skeleton voxels with only 1 neighbor are end points. 
3. All skeleton contours are traced until the next 

branching/end point and added to G as undirected 
edges. 

The Boost Graph Library (www.boost.org/libs/graph) is 
used for handling the graph. Additional information stored is 
the estimated bifurcation angle α  for each node (branch 
point) and the averaged radius r  for each edge.  
Our a priori knowledge of the hepatic vessel systems is that 
(1) they are tree-shaped; (2) do not form loops, (3) the 
thickness of vessels reduces in the flow direction, and (4) 
there are no obtuse angles between vessels at branch points 
[6]. We can use this information to design a deterministic 
classifier to mark each edge as part of the portal or hepatic 
venous system or background (non-vascular). Classification 
is achieved using the two algorithms given below. 

54



If only one vessel system is contrast enhanced, only the 
removal of the background structures is required (Alg 1): 
One or more major branches are selected by the user. Each 
adjacent branch is added to the vessel tree, if its radius is 
smaller than the radius of the first branch and the bifurcation 
angle is reasonably large. A hysteresis threshold maxrΔ  for 
the radius of is used. Alg 1 iterates for all newly added 
branches and terminates if minr  is reached. 
If more than one vessel system is present, we use Alg 2 to 
separate them at the smallest connecting branch: This 
algorithm calls Alg 1 to add the larger branches to both 
vessel systems first. The minimal radius minr is the reduced 
and Alg 1 is called again, so that both vessel trees 
continuously grow more detailed. If at any step a branch is 
claimed by both trees, it cannot be classified and is removed 
from the graph. 

Algorithm 1 (Removal of non-vascular structures) 
FOR all edges adjacent to the vessel tree 
    IF maxmin rrrr prev Δ+≤≤  AND minαα ≥
        THEN label adjacent edge as part of vessel tree 
        AND examine adjacent edges beyond current one 
    END IF 
END FOR 
Algorithm 2 (Separation of vessel systems) 
FOR minr =15mm decremented to 2mm, stepsize 1mm 

       CALL Algorithm 1 for portal vein and current minr
       CALL Algorithm 1 for hepatic vein and current minr
        FOR edges labeled in both trees 
           REMOVE edge 
        END FOR 
 END FOR 

3. EXPERIMENTS AND RESULTS 
3.1 Datasets 
Six datasets were used, 3 from the Oxford John Radcliffe 
Hospital NHS Trust, and 3 from the MICCAI07 workshop 
database [1]. Relevant details are summarized in Table 1 
(Rows 1-3) together with a measure of the difficulty in 
automated segmentation (Row 4), defined as the difference 
in peaks between the vessel and background distributions 
(see Fig 2). Note that the MICCAI datasets were superior to 
the Oxford datasets in this respect. Manual segmentation by 
one of the authors (HH) was used as the reference against 
which to evaluate algorithm performance. Performance is 
reported using the Dice Similarity Coefficient (DSC). 
3.2 Graph cuts sensitivity to choice of parameters  
Our segmentation algorithm has 3 parameters, σλλ ,, LB . 
Experiments were done to determine the parameter ranges in 
which the best algorithm results could be obtained.
Parameter Lλ : was evaluated assuming 0== σλB  i.e. a 
purely voxel-based MLE, based on the user-selected 
intensity distribution. The DSC was calculated over a 
parameter range ∈Lλ [0,100] in increments of 5. Results 

are plotted in Fig 3(a) which shows that for 30>Lλ , the 
DSC value is approximately constant, below this the result is 
unstable, possibly due to rounding errors in the minimum 
cost cut calculation.  Note that OX2 and OX3 have low DSC 
values due to the presence of a lesion which is of similar 
intensity to that of vessels. Both datasets were excluded 
from further parameter setting validation. 
Parameter σ : is a measure of image noise. Homogeneous 
regions of liver parenchyma were selected, and the std dev. 
of a Gaussian fitted to the histograms estimated, see Table 1 
(Row 5). This shows that this varies from dataset

 OX1 OX2 OX3 MIC1 MIC2 MIC3 

1) Resolution (x,y,z) 
in mm 

0.703, 0.703, 5.0 0.626, 0.625, 5.0 0.684, 0.684, 2.5 0.742, 0.742, 1.5 0.629, 0.8629, 3.0 0.760, 0.760, 3.0 

2) Enhanced vessels PV, HV HV PV, HV PV PV, HV PV,HV

3) Contrast agent n.s. 100 ml NIO 300 100 ml NIO 300 n.s. n.s. n.s. 

4) Vessel contrast 30 HU 15 HU 40 HU 75 HU 70 HU 105 HU 
5) Image noise 4.1 HU 3.5 HU 6.4 HU 10.2 HU 6.3 HU 5.5 HU 

6) DSC 
    (adjusted DSC) 

0.77 0.61 
(0.63) 

0.44 
(0.70) 

0.59 0.83 0.72 

7) PV edges 80 - 366 1117 562 200 

8) HV edges 84 147 92 - 275 121 

9) UC edges 2 - 2 - 16 1 

10) Total length PV 0.44 mm - 1.93 mm 3.74 mm 3.22 mm 1.07 mm 

11) Total length HV 0.60 mm 1.36 mm 0.41 mm - 1.70 mm 0.88 mm 

Table 1: Data analysis of the Oxford (OX) and MICCAI (MIC) datasets : Rows 1-3 details of acquisition, Row 4 estimated 
vessel contrast (see sect. 3.1), Row 5 estimated noise (sect 3.2), Row 6 DSC value for best parameter settings (sect 3.2), Rows 
7-9 number of edges in final vessel system, Rows 10-11 accumulated length from graph-based analysis. 
PV=portal vein, HV=hepatic vein, UC=unconnected,  n.s.=not specified. 
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to dataset and hence can not be assumed a constant. We 
therefore empirically investigated varying σ  keeping 

15,40 == BL λλ  (see Fig 3(b)). The conclusion is that 

[ ]6,2∈σ  gives acceptable results. 

Parameter Bλ : Using BL λλσ ,100,2 ==  was varied 
in [0,50] but this had little effect on the DSC value. This 
is as expected as Bλ  effects vessel smoothness (Fig 4) 
and thus only changes vessel labels on the vessel 
boundary which does not change the DSC value 
significantly. 
Based on the above analysis we used 

15,35,2 === BL λλσ , in subsequent analysis for all 
datasets. The DSC values for these parameter settings for 
the 6 datasets are shown in Table 1 (Row 6). Manual 
removal of the lesions from the segmentations of OX2 and 
OX3 could improve the DSC in both cases. 
When examined visually, both the vessel surfaces and 
skeleton lines were clean and smooth (Fig. 5, left). 
3.3 Graph-based analysis 
Results of applying the complete graph-based analysis for 
a representative dataset (MIC2) are shown in Fig. 5 
(right). Note that graph-analysis algorithm 1 eliminates 
extra-hepatic structures such as the aorta and kidneys. 
Most intra-hepatic lesions are detected and removed. The 
algorithm classifies all major vessels correctly in our 6 
datasets.  
The total accumulated length is reported in Table 1 (Rows 
10-11) and well as the number of edges in the portal and 
hepatic venous systems as well as unclassified edges 
Rows (7-9). These values are as good if not better than 
those reported in [7].

Fig 3: (a) evaluation of Lλ , and (b) evaluation of  in 
graph cut segmentation method. 

        
Fig 4: Effect of Bλ  on segmentation (left) 0=Bλ  and 

(right) 30=Bλ . 

  
Fig 5: MIC2 dataset: (left) Segmentation and (right) 
graph representation with hepatic veins (dark-blue), 
portal veins (light-green), and vessels not classified (red). 

4. DISCUSSION AND CONCLUSION 
We have presented a novel method for analysis of 
complex vessel systems from 3D liver CT images. Our 
approach uses probabilistic intensity information and 
surface smoothness as constraints.  We also presented an 
algorithm to separate the different hepatic vasculatures. 
We have evaluated the segmentation step on 6 datasets, 
and found the algorithm to be robust in a certain 
parameter range. The computation time for segmentation 
and analysis on a standard PC (1.6GHz CPU, 512MB 
RAM, Windows XP) is reasonable although it varied 
considerably dependent on the complexity of the resolved 
object rather than image size. Future work includes 
combining this work with a liver shape segmentation and 
investigating the application of the methodology in 
treatment planning. 
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